Gradient estimates for eigenfunctions on compact Riemannian manifolds with boundary

نویسنده

  • Xiangjin Xu
چکیده

The purpose of this paper is to prove the L∞ gradient estimates and L∞ gradient estimates for the unit spectral projection operators of the Dirichlet Laplacian and Neumann (or more general, Ψ1-Robin) Laplacian on compact Riemannian manifolds (M, g) of dimension n ≥ 2 with C2 boundary . And we also get an upper bounds for normal derivatives of the unit spectral projection operators of the Dirichlet Laplacian from L2(M) to L2(∂M).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local and Global Analysis of Eigenfunctions on Riemannian Manifolds

This is a survey on eigenfunctions of the Laplacian on Riemannian manifolds (mainly compact and without boundary). We discuss both local results obtained by analyzing eigenfunctions on small balls, and global results obtained by wave equation methods. Among the main topics are nodal sets, quantum limits, and L norms of global eigenfunctions. The emphasis is on the connection between the behavio...

متن کامل

On Multilinear Spectral Cluster Estimates for Manifolds with Boundary

Let (M, g) be a smooth, compact n-dimensional Riemannian manifold with boundary and let ∆ be the corresponding Laplace-Beltrami operator acting on functions. If the boundary is non-empty, we assume that either Dirichlet or Neumann conditions are imposed along ∂M. Consider the operators χλ defined as projection onto the subspace spanned by the Dirichlet (or Neumann) eigenfunctions whose correspo...

متن کامل

Universal Local Parametrizations via Heat Kernels and Eigenfunctions of the Laplacian

We use heat kernels or eigenfunctions of the Laplacian to construct local coordinates on large classes of Euclidean domains and Riemannian manifolds (not necessarily smooth, e.g. with Cα metric). These coordinates are bi-Lipschitz on embedded balls of the domain or manifold, with distortion constants that depend only on natural geometric properties of the domain or manifold. The proof of these ...

متن کامل

Differential Harnack Inequalities on Riemannian Manifolds I : Linear Heat Equation

Abstract. In the first part of this paper, we get new Li-Yau type gradient estimates for positive solutions of heat equation on Riemmannian manifolds with Ricci(M) ≥ −k, k ∈ R. As applications, several parabolic Harnack inequalities are obtained and they lead to new estimates on heat kernels of manifolds with Ricci curvature bounded from below. In the second part, we establish a Perelman type L...

متن کامل

Spectral properties of Schrödinger operators on compact manifolds: rigidity, flows, interpolation and spectral estimates

This note is devoted to optimal spectral estimates for Schrödinger operators on compact connected Riemannian manifolds without boundary. These estimates are based on the use of appropriate interpolation inequalities and on some recent rigidity results for nonlinear elliptic equations on those manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002